
Chapter Four
Gelfond’s Solution of Hilbert’s Seventh Problem

(Revised January 2, 2011)

Before we consider Gelfond’s, and then Schneider’s, complete solutions to
Hilbert’s seventh problem let’s look back and see what common elements we can
find in Fourier’s demonstration of the irrationality of e, Hermite’s demonstration
of the transcendence of e, and Gelfond’s demonstration of the transcendence of
eπ. The first, and most obvious, common feature these proofs share is that they
are all proofs by contradiction–the value under consideration is assumed to be
rational or algebraic and a contradiction is deduced from that assumption. The
second common feature concerns the nature of the contradiction obtained–in
each case the deduction leads to a small positive integer, more specifically an
integer between 0 and 1. (This was used in Gelfond’s proof to show An = 0
for n sufficiently large yet, as seen in the exercises from the previous chapter,
Gelfond’s proof could be restructured so that the proof’s final contradiction is
the existence of an integer between 0 and 1.)

In Fourier’s proof this integer was produced through a truncation of the
power series representation for the number e. Hermite obtains this contrar-
ian integer through simultaneous good rational approximations to e, e2, . . . , en.
Gelfond was led to this integer through an examination of the coefficients of
a so-called Newton interpolation series to the function eπz In each case, the
conclusion of the proof relied on establishing two facts about the integer that
had been produced: That the integer is nonzero and that its absolute value is
less than 1.

Yet these proof’s all share another common feature that is only obvious
once it is pointed out–each of these proofs are opportunistic in that they rely
on a previously known, and explicit, series representation for the number e
or the function ez or the function eπz. We will see that while both Gelfond
and Schneider based their solutions to Hilbert’s αβ problem on assuming the
contrary of what the wished to establish they did not use previously studied
functions. Instead, they each produced a new function that would allow them
to exploit the assumed arithmetic nature of the value under consideration to
reach the ultimate contradiction. And, although Gelfond and Schneider used
it differently, each of the functions they produced depended on an application
of the pigeonhole principle, which is more elegantly known as Dirichlet’s box
principle.

We begin by stating what Gelfond established (which is the third, equivalent
version of the αβ portion of Hilbert’s seventh problem we discussed in Chapter
1).

Theorem (Gelfond, 1933). Suppose that α and β are nonzero algebraic
numbers. If

logα

log β
(1)

is irrational then it is transcendental.
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Before we look at Gelfond’s application of the pigeonhole principle to produce
an advantageous function let’s look at an outline of his proof, which we will
see could appear to be a bit convoluted. (This sketch, and the complete proof
below, are slightly simplified versions of Gelfond’s original argument. These were
given by Hille in an exposition of Gelfond’s argument for an English-speaking
audience.)

STEP 1. This is Gelfond’s point of departure from the earlier opportunistic
transcendence proofs. Gelfond used the pigeonhole principle to find integers ck`,
not all zero, so that the function:

F (z) =

K∑
k=−K

K∑
`=−K

ck`α
kzβ`z =

K∑
k=−K

K∑
`=−K

ck`e
log(α)kzelog(β)`z

has the property that |F (t)(0)| is small for a modest range of derivatives.

STEP 2. Note that any t the tth derivative of F (z) has a particularly simple
form:

F (t)(z) =

K∑
k=−K

K∑
`=−K

ck`
(
k logα+ ` log β

)t
elog(α)kzelog(β)`z.

So when F (t)(z) is evaluated at z = 0 we obtain an expression:

F (t)(0) =

K∑
k=−K

K∑
`=−K

ck`(k logα+ ` log β)t

= (log β)t
K∑

k=−K

K∑
`=−K

ck`(k
logα

log β
+ `)t

Thus, using the assumption that
logα

log β
is algebraic Gelfond would know that

for each t,

(log β)−tF (t)(0) =

K∑
k=−K

K∑
`=−K

ck`(k
logα

log β
+ `)t

is an algebraic number.
Each of the values |F (t)(0)| in STEP 1, is indeed so small that if it is

nonzero, then the nonzero algebraic norm of the algebraic integer derived from
(log β)−tF (t)(0) has absolute value less than 1. Thus Gelfond has actually found
the original integer coefficients ck`, not all zero, so that the function:

F (z) =

K∑
k=−K

K∑
`=−K

ck`e
log(α)kzelog(β)`z

has the property that F (t)(0) = 0 for a modest range of derivatives.
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STEP 3. Here is where Gelfond’s proof becomes iterative–it only appears to be
convoluted until you see its structure. Gelfond used analysis, essentially a clever
application of the Maximum Modulus Principle and then the Cauchy Integral
Formula, to show that |F (t)(n)| is small for a modest range of integers and for
slightly fewer derivatives than in STEP 1.

STEP 4. Again by taking the algebraic norm of the algebraic integer associated
with each of the values

(log β)−tF (t)(n) =

K∑
k=−K

K∑
`=−K

ck`(k
logα

log β
+ `)αknβ`n

Gelfond concludes that each of the values |F (t)(n)| is not only small but is equal
to 0.

The conclusion of STEP 4 implies that the original function has a higher order
of vanishing at z = 0 than had been discovered in STEP 2. This discovery im-
plies that a certain system of equations, with an equal number of equations and
unknowns, has a nonzero solution. Since F (z) 6= 0, because all of the coefficients
ck` are not zero and the functions e(logα)z and e(log β)z are algebraically indepen-
dent, this implies that a certain Vandermonde matrix vanishes, which implies

that the ratio
logα

log β
is rational (contrary to the hypothesis of the theorem).

Finding the advantageous function.

Before we give the precise sort of result Gelfond used to find coefficients ck`,
which yields what we called an advantageous function, let’s just look at the
general principle behind finding those coefficients. Suppose you have a linear
form with real coefficients a1, a2, . . . , ak:

L( ~X) = a1X1 + a2X2 + . . .+ akXk.

Imagine that your goal is to find a nonzero integer vector ~X, with small coordi-
nates, so that |L( ~X)| is also small. This is possible where the two senses of the
word small are inversely related.

To find the vector ~X = (X1, . . . , Xk) consider the mapping from Zk to R
given by ~n 7→ L(~n), so

(n1, n2, . . . , nk) 7→ a1n1 + a2n2 + . . .+ aknk.

Take N to be a positive integer, then this mapping maps the set of integer
vectors

N(N) = {(n1, n2, . . . , nk) : 0 ≤ ni ≤ N for each i}

into an interval of the real line. The above set contains (N + 1)k vectors and if
we divide the interval of the real line containing the image of N(N) into fewer
than (N + 1)k subintervals, then, by the pigeonhole principle, two of the images
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will have to lie in the same subinterval: That is there will exist two vectors
~X1 and ~X2 in N(N) so that L( ~X1) and L( ~X2) lie in the same subinterval. If

everything is set up correctly we than know that |L( ~X1− ~X2)| = |L( ~X1)−L( ~X2)|
is small; note that the absolute values of the coordinates of the vector ~X1 − ~X2

will be at most N , as each of these vectors is an element of N(N).
We formalize the above discussion as a lemma:

Lemma. Let a1, a2, . . . , ak be real numbers and let A = max{|ai| : 1 ≤ i ≤ k}.
Take any two positive integers N and ` so that (N + 1)k > `. Then there exist
rational integers n1, . . . , nk with

0 < max{|n1|, . . . , |nk|} ≤ N (2)

and

|a1n1 + a2n2 + . . .+ aknk| ≤
kAN

`
. (3)

Proof. The lemma follows from the outline above. The only subtlety is to let
−T denote the sum of the negative numbers among the ai and let S denote the
sum of the positive numbers among the ai. Then the mapping ~n 7→ L(~n)

)
maps

the vectors N(N) into the real interval [−kNT, kNS], which we subdivide into
` intervals of equal length.

Note: There is one trade off between which of the two inequalities (2) or (3)
you wish to have in a simpler form, and another between which of them you
wish to be smaller. For example, since the proof of the above lemma requires
that (N + 1)k > `, by way of illustration take ` = Nk. Then (3) offers the upper
bound:

|a1n1 + a2n2 + . . .+ aknk| ≤
kA

Nk−1 .

So, as we might expect, the smaller we want the linear form to be the larger we
might have to take the integers n1, n2, . . . , nk. Or, put differently, the larger we
allow the integers n1, . . . , nk to be the smaller we can make the linear form.

The above simple argument concerning a single linear form with real coef-
ficients can be extended to include the case where the coefficients are complex
numbers (each form is viewed as two forms, one involving the real parts of the
coefficients and the other the imaginary parts of the coefficients) and to simulta-
neously include several linear forms (the mapping will then be into Rm, for the
appropriate m). Instead of subdividing the image into intervals you subdivide it
into m−dimensional cubes. The point is to have fewer cubes than image points
so two points map into the same cube. This leads to the following result, which
we state in a readily applicable form.

Theorem. Let aij , 1 ≤ i ≤ n and 1 ≤ j ≤ m be complex numbers, with n > 2m.
Consider the linear forms

Lj( ~X) = a1jX1 + a2jX2 + . . .+ anjXn, for 1 ≤ j ≤ m.
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Let X be any positive number. Then there exist n rational integers, N1, N2, . . . , Nn,
not all zero, so that for each j,

|a1jN1 + a2jN2 + . . .+ anjNn| ≤ X

with

max
1≤i≤n

{|Ni|} ≤ [
23/2nA

X
]

2m
n−2m ,

where max{aij |} ≤ A.

Return to Gelfond’s Proof.

Although Gelfond did not formalize the information about his function that
his iterative application of basic analysis and algebra led to, it helps clarify
his proof if we codify the result Gelfond obtained in the Steps 1 through 4 (as
outlined above) into a single proposition.

Proposition. Suppose α and β are nonzero algebraic numbers and that
logα

log β
is an irrational algebraic number. If K is a sufficiently large positive integer

then there exist rational integers ck`,−K ≤ k, ` ≤ K with max{|ck,`|} ≤ 3K
2

so
that the function

F (z) = P (αz, βz) =

K∑
k=−K

K∑
`=−K

ck`α
kzβ`z (4)

satisfies
F (t)(0) = 0 for 0 ≤ t ≤ K5/2. (5)

Sketch of proof. As we qualitatively discussed in our brief look at Steps 1 and
2, above, Gelfond sought to find integers ck`, not all zero, so that the function:

F (z) = P (αz, βz) =

K∑
k=−K

K∑
`=−K

ck`α
kzβ`z

has the property that the algebraic numbers |(log β)−t)F (t)(0)|, for 0 ≤ t < T,
have algebraic integer equivalents whose algebraic norms are less than 1 in
absolute values. We will leave the parameters K and T unspecified until we see
what is required of them for this proof to succeed.

In order to find the coefficients ck`, the expression (log β)−tF (t)(0), for each
t, 0 ≤ t < T, is replaced by a linear form. Specifically, we introduce the notation
~C for the vector of coefficients (. . . , ck`, . . .) and consider the linear forms

Lt(~C) = (log β)−tF (t)(0) =

K∑
k=−K

K∑
`=−K

ck`(k
logα

log β
+ `)t. (6)
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This is a system of T linear forms with complex coefficients (k logα
log β + `)t and

(2K + 1)2 unknowns ck`.
We may apply the earlier theorem to find the unknown integers ck` if we

have
(2K + 1)2 > 2T. (7)

Before we attempt to specify K or T , let’s assume that the above inequality
holds and see what we need to obtain an appropriate function. We know from
the above theorem concerning several linear forms that for any X > 0, we can
find integers ck`, not all zero so that∣∣Lt(~C)

∣∣ < X, for each t,

where we have the estimate for C = max{|ck`|} of,

C ≤

23/2(2K + 1)2
(
K(
∣∣ logα
log β + 1

∣∣))T−1
X

 2T
(2K+1)2−2T

. (8)

This is a rather intimidating inequality, so do not stare at it too long, but simply
note that, imagining T and K as having been already chosen, it does offer a
relationship between C and X. This relationship is critical at the next step of
the proof, where we take an algebraic norm.

If we let δ denote a denominator for the algebraic number
logα

log β
then δtLt(~C)

is an algebraic integer whose norm is easily estimated, at least in terms of our

as-yet undetermined entities K,T,X, and C. Let η1 =
logα

log β
, η2, . . . , ηd denote

the conjugates of
logα

log β
and, temporarily, use notation stressing the dependence

of δtLt(~C) on
logα

log β
by writing, δtLt(~C) = Pt(

logα

log β
). We note that Pt(x) is the

integral polynomial

Pt(x) =
K∑

k=−K

K∑
`=−K

ck`(kδx+ δ`)t.

Therefore, if Pt(
logα

log β
) 6= 0 the expression

Nt = Pt(
logα

log β
)
∏

j=2,··· ,d

Pt(ηj). (9)

is a nonzero integer.
The first factor in (9) is already known to be relatively small (once we solve

for the coefficients ck`): ∣∣Pt( logα

log β
)
∣∣ =

∣∣δtLt(~C)
∣∣ < δtX.
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Each of the other factors may be estimated in terms of the other unspec-
ified parameters. To assist us in writing down this estimate we let c0 =
max{|δ|, |η2|, . . . , |ηd|}. Then,∣∣Pt(ηj)∣∣ ≤ (2K + 1)2|δ|t(K(|ηj |+ 1))tC ≤ ct0KT+3C ≤ K3/2TC,

where each of these two inequalities holds if K is sufficiently large.
Therefore, for each t, 0 ≤ t < T,∣∣Nt∣∣ < X × Cd−1 ×K2T .

If we ignore the appearances of K and T , which will be chosen momentarily,
we see that in order to have

∣∣Nt∣∣ < 1, so we can conclude that each of the

derivatives F (t)(0) = 0, we need the product X × Cd to be small.

Step 3. To uncover a final bit of information about the relationship between
C and the basic parameters of K and T that allows Gelfond’s proof to go
through, we look at his application of the Maximum Modulus Principle. Gelfond
employed a theorem due to Jensen, whose proof relied on the Maximum Modulus
Principle, but it is possible to simply appeal to that principle.

Let a be a complex number with |a| = K2/3 for which |F (a)| = max|ζ|=K2/3{|F (ζ)|}.
The function F (z)

zT−1 is entire, because the parameters will be chosen so the
|Nt| < 1, so F (z) will have a zero of order T − 1 at z = 0. Therefore

∣∣F (a)

aT−1
∣∣ ≤ max

|ζ|=K
{
∣∣F (ζ)

ζT−1
∣∣.

Since

F (z) = P (αz, βz) =

K∑
k=−K

K∑
`=−K

ck`α
kzβ`z

we have the estimate

max
|ζ|=K

{
∣∣F (ζ)

∣∣} ≤ (2K+1)2C max
|ζ|=K

{
∣∣αKζβKζ∣∣} ≤ (2K+1)2Cemax{| logα|,| log β|}K2

.

It follows that

∣∣F (a)
∣∣ ≤ (2K+1)2Cemax{| logα|,| log β|}K2

(
K2/3

K

)T−1
≤ (2K+1)2Cemax{| logα|,| log β|}K2− 1

3 (T−1) logK ,

which is a quantity we want to be small.
Thus it is a fairly delicate thing to balance all of these requirements on

K,T,X, and C. By looking at these conditions Gelfond/Hille gave the choices,
in terms of the free parameter K, of:

T = [K2 log logK

logK
] X = exp

(
−cK2 logK

log logK

)
(10)
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where the constant c can be seen to only depend on α, β and αβ . It follows from
(8) that we can take as an estimate for the coefficients C = 3K

2

. (Note that
with these choices, by allowing the coefficients to be fairly large, we are forcing
the absolute values on the linear forms to be very small.)

With the above choices it is still a daunting matter to conclude that there
are integers ck,`, not all zero, with max{|ck,`|} ≤ 3K

2

so that F (z) satisfies

F (t)(0) = 0 for 0 ≤ t < T. (11)

And moreover, by the above application of the Maximum Modulus Principle,
we already know that for K sufficiently large

max
|ζ|=K2/3

{|F (ζ)|} ≤ e− 1
6K log logK .

Completion of Step 3. We now apply the Cauchy Integral Formula to show
that |F (t)(z)| is small for a modest range of integers t for all z in a fairly large
disc. (In Step 4 we will then use an algebraic norm to find that F (z) has a fairly
large order of vanishing at a range of integers.)

Consider the integral representation of F (t)(z0) where we will take |z0| ≤
(1/2)K2/3,

F (t)(z0) =
t!

2πi

∫
|ζ|=K2/3

F (ζ)dζ

(ζ − z0)t+1
.

It follows that for K sufficiently large

|F (t)(z)| < e−
1
12K

2 log logK for |z| ≤ 1

2
K2/3, 0 ≤ t ≤ K2

logK
.

Then for any integer n,−[ 12K
2/3] ≤ n ≤ [ 12K

2/3] the algebraic values

(log β)−tF (t)(n) =

K∑
k=−K

K∑
`=−K

ck`(k
logα

log β
+ `)αknβ`n

satisfy ∣∣(log β)−tF (t)(n)
∣∣ < e−

1
24K

2 log logK for 0 ≤ t ≤ K2

logK
,

provided K is sufficiently large.

Step 4. An application of the algebraic norm idea implies that each of the
algebraic values above equals zero. Therefore F (z) has a zero at each integer

n,−[ 12K
2/3] ≤ n ≤ [ 12K

2/3] to order at least
K2

logK
. Another application of the

Maximum Modulus Principle followed by an application of the Cauchy Integral
Formula completes the proof of the proposition. We leave these details to the
dedicated reader (for details see Hille’s paper [Hi]).

The conclusion of Gelfond’s solution
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The above proposition tells us that F (t)(0) = 0 for 0 ≤ t ≤ K5/2. We
translate this conclusion into a system of equations

K∑
k=−K

K∑
`=−K

ck`(k
logα

log β
+ `)t = 0, 0 ≤ t ≤ K5/2

Since this system of equations has a non-zero solution, namely the (2K + 1)2

coefficients ck`, we know that any (2K + 1)2−rowed determinant of the matrix
associated with the above system of equations must vanish. In particular,

det
∣∣∣ (k logα

log β
+ `

) ∣∣∣ = 0, −K ≤ k, ` ≤ K, 0 ≤ t ≤ 4K(K+ 1) = (2K+ 1)2− 1.

The above determinant is a Vandermonde determinant, so it vanishes if and
only if two of its columns are equal. This is the same as the condition that for

two pairs of integers (k, `) 6= (k′, `′), k
logα

log β
+ ` = k′

logα

log β
+ `′, which implies

that
logα

log β
=

`− `′

k′ − k
is a rational number, contrary to Hilbert’s, and Gelfond’s

hypothesis.

Preliminaries to Schneider’s solution: Siegel’s Lemma

Schneider’s solution to Hilbert’s seventh problem appeared within a few
months of Gelfond’s. (The story goes that Schneider learned of Gelfond’s so-
lution the day he submitted his own paper for publication.) Like Gelfond’s
proof, Schneider’s depended on an application of the pigeonhole principle, el-
ementary complex analysis, and the fundamental fact that the algebraic norm
of a nonzero algebraic integer is a nonzero rational integer. However, Schneider
did not apply the pigeonhole principle to solve a system of inequalities, and then
show that these inequalities implied the vanishing of a function at certain points
(with multiplicities). Rather, he directly solved a system of equalities, indeed
a system of homogeneous linear equations. This allowed him to find an entire
function with prescribed zeros, without having to iterate the use of an analytic
estimate and of algebraic norms. (This idea has been attributed to Schneider’s
thesis advisor, C.L. Siegel (1929), and it can even be traced back to Axel Thue
(1909).)

Before we explain Schneider’s use of the pigeonhole principle we state a
proposition which follows from that application. We will see that the deduction
of this proposition is significantly more straightforward than the deduction of
the analogous proposition in Gelfond’s solution, even if its statement is not.

Proposition. Suppose α and β are algebraic numbers with α 6= 0, 1 and β
irrational. Further assume that αβ is algebraic and let d = [Q(α, β, αβ) : Q].
Let m be a positive integer and put D1 = [

√
2dm3/2] and D2 = [

√
2dm1/2]. Then

if m is sufficiently large there exist rational integers ck`, 0 ≤ k ≤ D1 − 1, 0 ≤
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` ≤ D2 − 1, not all zero, such that the function

F (z) =

D1−1∑
k=0

D2−1∑
`=0

ck`z
kα`z (12)

satisfies
F (a+ bβ) = 0 for 1 ≤ a, b ≤ m. (13)

Moreover, there exists a constant c0 = c0(α, β) so that the integers ck` satisfy

0 < max |ck`| ≤ cm
2/3 logm

0 . (14)

Before we prove this proposition we note how it differs in two significant
ways from Gelfond’s proposition. First, the function vanishes at several points,
and, second, there is no reference to the derivatives of the function. We will see
that, because of this later observation, Schneider’s method can be applied to
some problems that are not immediately approachable by Gelfond’s method.

The proof of this proposition depends on an elementary result to guarantee the
existence of the unknown coefficients ck`.

Suppose we wish to find a nonzero integral solution to the homogeneous
system of M linear equations in N unknowns given by

a11X1 + a12X2 + · · ·+ a1NXN = 0

a21X1 + a22X2 + · · ·+ a2NXN = 0

...

aM1X1 + aM2X2 + · · ·+ aMNXN = 0

where the coefficients amn are integers, not all equal to 0.

The matrix of coefficients (amn) may be viewed as a mapping from RN to
RM so basic linear algebra tells us that if N > M then there is a nonzero vector
in the mapping’s kernel, thus there is a real solution to the above system of
equations. But the result we seek is that if N > M there are integral solutions
to this system of equations whose absolute values may be bounded from above.
We will see that this bound will depend only on M,N, and the absolute values
of the coefficients amn. It is perhaps surprising that the deduction of this result
is no more difficult than the deduction of result Gelfond employed.

We start with the notation A = max{|amn| : 1 ≤ m ≤ M, 1 ≤ n ≤ N}. We
want to use the system of equations to map integral vectors in ZN into ZM , so
we consider the M ×N matrix

A =


a11 a12 . . . a1N
a21 a22 . . . a2N
...

...
...

...
aM1 aM2 . . . aMN

 .
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Then we are searching for a nonzero vector

~X =

 X1

...
XN

 ∈ ZN

satisfying A ~X = ~0, or equivalently, ~X is a nonzero solution to the system of
equations above.

Suppose we take a cube of vectors D in ZN and using the matrix A, map
them all into a rectangular box of vectors R in ZM . If there are fewer integral
vectors in the range set R than in the domain set D, then there must exist two
distinct integer vectors ~x1 and ~x2 in D that get mapped to the same vector in
R. That is, A ~x1 = A ~x2. Thus we see that ~X = ~x1 − ~x2 is a nonzero integer
solution to A ~X = ~0. Moreover, since the vectors ~x1 and ~x2 are both from the
domain cube D, we can bound the size of the largest component of the solution
vector ~x1 − ~x2.

To carry this out we let X ≥ 1 be an integer and define the N -dimensional
domain cube D(X) by

D(X) =




x1
x2
...
xN

 ∈ ZN : 0 ≤ xn ≤ X , for all n = 1, 2, . . . , N

 .

D(X) contains (1 +X)N vectors.
The matrix A maps D(X) into an easily described subset of ZM . The

description of this set is simplified if for any integer k we put k+ = max{0, k}
and k− = max{0,−k}. We can then define the appropriate set by

R(X) =




y1
y2
...
yM

 ∈ ZM : −X
N∑
n=1

a−mn ≤ ym ≤ X
N∑
n=1

a+mn, 1 ≤ m ≤M

 .

It is easy to verify that A(D(X)) ⊆ R(X). A calculation shows that the cardi-

nality of R(X) is at most (1 +XAN)M , where we recall that A = max{|amn|}.
By the pigeonhole principle, if there are more integral vectors in D(X) than

there are integral vectors in R(X) then A must map two vectors to the same
vector. Explicitly, if

(1 +X)N > (1 +XAN)M , (15)

then A will map two distinct vectors ~x1, ~x2 ∈ D(X) to the same vector in
R(X). Thus we have that A( ~x1 − ~x2) = ~0, where ~x1 − ~x2 is a nonzero integer
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vector. Moreover, each coordinate of both ~x1 and ~x2 is an element of the set
{0, 1, . . . , X}, so the maximum absolute value of the difference of any two of
their coordinates must be less than or equal to X.

We are naturally led to the following question: Given that condition (15)
must hold for us to apply the pigeonhole principle we next seek the smallest
possible X that satisfies that condition as this will lead to a good estimate for
the size of the solutions to our original system of equations. It can be shown,
and it is an exercise below to do so, that given positive integers A,M, and N ,
with N > M , the value

X =
[
(AN)

M
N−M

]
, (16)

suffices.

The above discussion establishes the following lemma that we apply in the
next chapter to establish the above proposition we are attributing to Schneider.

Theorem (Siegel’s Lemma). Let A = (amn) be a nonzero M × N matrix
having integer entries and let A = max{|amn| : 1 ≤ m ≤ M, 1 ≤ n ≤ N}.
Assume A ≥ 1. If N > M > 0 then there exists a nonzero vector

~X =


X1

X2

...
XN

 ∈ ZN ,

with max{|X1|, . . . , |XN |} ≤ (AN)
M

N−M , satisfying

A ~X = ~0. (17)

Exercises

1. Let a1, a2, . . . , an be complex numbers.

A =


1 1 . . . 1
a1 a2 . . . an
a21 a22 . . . a2n
...

...
...

...
an−11 an−12 . . . an−1n

 .

Show that the determinant of the above matrix, a so-called Vandermonde de-
terminant, equals 0 if and only if ai = aj for some i 6= j.

2. Can Gelfond’s Proposition be deduced from a direct application of Siegel’s
Lemma (why or why not)?
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3. Verify that with the choices of parameters (10) the inequality (8) allows

us to assume that C = 3K
2

, provided K is sufficiently large.

4. Did Gelfond use his assumption that logα
log β is algebraic in Step 1 of his

proof. If so, how?
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